Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
J Mol Neurosci ; 74(2): 41, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602576

RESUMO

KLS-13019 was reported previously to reverse paclitaxel-induced mechanical allodynia in a mouse model of chemotherapy-induced peripheral neuropathy (CIPN). Recent studies demonstrated that paclitaxel-induced increases in inflammatory markers (GPR55, NLRP3, and IL-1ß) of dorsal root ganglion (DRG) cultures were shown to be reversed by KLS-13019 treatment. The mechanism of action for KLS-13019-mediated reversal of paclitaxel-induced neuroinflammation now has been explored using GPR55 siRNA. Pre-treatment of DRG cultures with GPR55 siRNA produced a 21% decrease of immunoreactive (IR) area for GPR55 in cell bodies and a 59% decrease in neuritic IR area, as determined by high-content imaging. Using a 24-h reversal treatment paradigm, paclitaxel-induced increases in the inflammatory markers were reversed back to control levels after KLS-3019 treatment. Decreases in these inflammatory markers produced by KLS-13019 were significantly attenuated by GPR55 siRNA co-treatment, with mean IR area responses being attenuated by 56% in neurites and 53% in cell bodies. These data indicate that the percentage decreases in siRNA-mediated attenuation of KLS-13019-related efficacy on the inflammatory markers were similar to the percentage knockdown observed for neuritic GPR55 IR area. Similar studies conducted with cannabidiol (CBD), the parent compound of KLS-13019, produced low efficacy (25%) reversal of all inflammatory markers that were poorly attenuated (29%) by GPR55 siRNA. CBD was shown previously to be ineffective in reversing paclitaxel-induced mechanical allodynia. The present studies indicated significant differences between the anti-inflammatory properties of KLS-13019 and CBD which may play a role in their observed differences in the reversibility of mechanical allodynia in a mouse model of CIPN.


Assuntos
Canabidiol , Animais , Camundongos , RNA Interferente Pequeno/genética , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Hiperalgesia/tratamento farmacológico , Anti-Inflamatórios , Modelos Animais de Doenças , Paclitaxel/toxicidade , Receptores de Canabinoides/genética
2.
Eur Rev Med Pharmacol Sci ; 27(6 Suppl): 77-88, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38112957

RESUMO

OBJECTIVE: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by an intense fear of gaining weight, a relentless pursuit of thinness, and a distorted body image. Recent research highlights the substantial contribution of genetics to AN's etiology, with genes like BDNF, SLC6A4, and DRD2 implicated. However, a comprehensive genetic test for AN diagnosis is lacking. This study aims to elucidate the biological foundations of AN, examining variants in genes associated with syndromic forms, rare variants in AN patients, and candidate genes from GWAS studies, murine models, or established molecular pathways. MATERIALS AND METHODS: The study involved 135 AN patients from Italy, diagnosed based on DSM-V criteria. A specialized Next-Generation Sequencing panel targeting 163 genes was designed. Sequencing was performed on an Illumina MiSeq System, and variants were analyzed using bioinformatics tools. Data on clinical parameters, exercise habits, and AN types were collected. RESULTS: The AN cohort, predominantly female, exhibited diverse clinical characteristics. Our analysis identified gene variants associated with syndromic forms of AN, such as STRA6, NF1, MAT1A, and ABCC6. Variants were also found in known AN-related genes (CD36, DRD4, GCKR, GHRL, GRIN3B, GPR55, LEPR) and in other 16 candidate genes (A2M, AEBP1, ABHD4, ACBD7, CNTNAP, GFRAL, GRIN2D, LIPE, LMNA, NMU, PDE3B, POMC, RYR1, TNXB, TYK2, VPS13B), highlighting the complexity of AN's genetic landscape. The endocannabinoid and dopamine pathways play crucial roles. Skeletal muscle-related genes and appetite-regulating hormones also revealed potential connections. Adipogenesis-related genes suggest AN's association with subcutaneous adipose tissue deficiency. CONCLUSIONS: This study provides comprehensive insights into the genetic underpinnings of AN, emphasizing the importance of multiple pathways. The identified variants contribute.


Assuntos
Anorexia Nervosa , Humanos , Feminino , Animais , Camundongos , Masculino , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/genética , Anorexia Nervosa/psicologia , Estudo de Associação Genômica Ampla , Itália , Carboxipeptidases , Proteínas Repressoras/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Receptores de Canabinoides/genética
3.
Nat Commun ; 14(1): 6559, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880248

RESUMO

Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. However, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, is not fully understood. Here, we report that in mice, adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in a model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings suggest the microglial Cnr1 may contribute to adverse effect of cannabis exposure in genetically vulnerable individuals.


Assuntos
Dronabinol , Microglia , Animais , Camundongos , Agonistas de Receptores de Canabinoides , Variações do Número de Cópias de DNA , Dronabinol/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/genética , Receptores de Canabinoides/genética
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047288

RESUMO

Mast cells (MCs) are the main participants in the control of immune reactions associated with inflammation, allergies, defense against pathogens, and tumor growth. Bioactive lipids are lipophilic compounds able to modulate MC activation. Here, we explored some of the effects of the bioactive lipid lysophosphatidylinositol (LPI) on MCs. Utilizing murine bone marrow-derived mast cells (BMMCs), we found that LPI did not cause degranulation, but slightly increased FcεRI-dependent ß-hexosaminidase release. However, LPI induced strong chemotaxis together with changes in LIM kinase (LIMK) and cofilin phosphorylation. LPI also promoted modifications to actin cytoskeleton dynamics that were detected by an increase in cell size and interruptions in the continuity of the cortical actin ring. The chemotaxis and cortical actin ring changes were dependent on GPR55 receptor activation, since the specific agonist O1602 mimicked the effects of LPI and the selective antagonist ML193 prevented them. The LPI and O1602-dependent stimulation of BMMC also led to VEGF, TNF, IL-1α, and IL-1ß mRNA accumulation, but, in contrast with chemotaxis-related processes, the effects on cytokine transcription were dependent on GPR55 and cannabinoid (CB) 2 receptors, since they were sensitive to ML193 and to the specific CB2 receptor antagonist AM630. Remarkably, GPR55-dependent BMMC chemotaxis was observed towards conditioned media from distinct mouse and human cancer cells. Our data suggest that LPI induces the chemotaxis of MCs and leads to cytokine production in MC in vitro with the differential participation of GPR55 and CB2 receptors. These effects could play a significant role in the recruitment of MCs to tumors and the production of MC-derived pro-angiogenic factors in the tumor microenvironment.


Assuntos
Receptor CB2 de Canabinoide , Receptores Acoplados a Proteínas G , Camundongos , Humanos , Animais , Receptores Acoplados a Proteínas G/genética , Receptor CB2 de Canabinoide/genética , Quimiotaxia , Mastócitos , Citocinas , Actinas , Receptores de Canabinoides/genética , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/fisiologia
5.
Adicciones ; 35(1): 33-46, 2023 Jan 01.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34171108

RESUMO

The endocannabinoid system has been associated with various psychiatric disorders, such as schizophrenia or addictive disorders. Recent studies have found that some polymorphisms in the cannabinoid receptor type 2 (CNR2), cannabinoid receptor type 1 (CNR1) and fatty acid amide hydrolase (FAAH) genes could play an important role as risk factors in the etiology of these diseases. We analysed different cannabinoid gene polimorphisms from non-substance using patients diagnosed with schizophrenia (n = 379), schizophrenic patients with cannabis use disorders (n = 124), cannabis users who did not have psychoses (n = 71), and 316 controls from various Spanish hospitals and health centres. We found a statistical association between polymorphisms rs35761398 and rs12744386 in the CNR2 gene and comorbidity of schizophrenia and cannabis dependence, as well as an association between loss of heterozygosity (overdominance) for polymorphism rs324420 in the FAAH gene and cannabis dependence in a Spanish population sample. The rs35761398 and rs12744386 polymorphisms in the CNR2 gene are genetic risk factors for schizophrenia in cannabis-dependent subjects. Loss of heterozygosity for polymorphism rs324420 in the FAAH gene is a genetic risk factor for cannabis dependence in this population.


El sistema cannabinoide se ha asociado con varios trastornos psiquiátricos como la esquizofrenia y las adicciones. Diversos estudios han observado que algunos polimorfismos del receptor cannabinoide tipo 2 (CNR2), del receptor cannabinoide tipo 1 (CNR1) y del gen de la enzima amido hidrolasa de ácidos grasos (FAAH) pueden ser factores de riesgo de estos trastornos. Hemos analizado diversos polimorfismos del sistema cannabinoide en pacientes diagnosticados de esquizofrenia sin trastorno por uso de sustancias (n = 379), esquizofrenia con trastorno por uso de cannabis (n = 124), dependientes de cannabis sin psicosis asociada (n = 71) y un grupo de control (316) procedentes de diversos hospitales y centros de asistencia sanitaria españoles. Hemos encontrado una asociación entre los polimorfismos rs35761398 y rs12744386 del CNR2 con la presencia de esquizofrenia y trastorno por uso de cannabis comórbido y una pérdida de heterocigosidad en el polimorfismo rs324420 del gen FAAH con la dependencia de cannabis en población española. Los polimorfismos rs35761398 y rs12744386 en CNR2 son factores de riesgo para esquizofrenia en sujetos dependientes de cannabis. La pérdida de heterocigosidad en el polimorfismo rs324420 en el gen FAAH es un factor de riesgo para la dependencia de cannabis.


Assuntos
Cannabis , Abuso de Maconha , Esquizofrenia , Humanos , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Abuso de Maconha/complicações , Abuso de Maconha/epidemiologia , Abuso de Maconha/genética , Polimorfismo de Nucleotídeo Único/genética , Comorbidade , Receptores de Canabinoides/genética
6.
Biomolecules ; 12(11)2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358910

RESUMO

The actions of cannabis are mediated by G protein-coupled receptors that are part of an endogenous cannabinoid system (ECS). ECS consists of the naturally occurring ligands N-arachidonylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the CB1 and CB2 cannabinoid receptors. Epigenetics are heritable changes that affect gene expression without changing the DNA sequence, transducing external stimuli in stable alterations of the DNA or chromatin structure. Cannabinoid receptors are crucial candidates for exploring their functions through epigenetic approaches due to their significant roles in health and diseases. Epigenetic changes usually promote alterations in the expression of genes and proteins that can be evaluated by various transcriptomic and proteomic analyses. Despite the exponential growth of new evidence on the critical functions of cannabinoid receptors, much is still unknown regarding the contribution of various genetic and epigenetic factors that regulate cannabinoid receptor gene expression. Recent studies have identified several immediate and long-lasting epigenetic changes, such as DNA methylation, DNA-associated histone proteins, and RNA regulatory networks, in cannabinoid receptor function. Thus, they can offer solutions to many cellular, molecular, and behavioral impairments found after modulation of cannabinoid receptor activities. In this review, we discuss the significant research advances in different epigenetic factors contributing to the regulation of cannabinoid receptors and their functions under both physiological and pathological conditions. Increasing our understanding of the epigenetics of cannabinoid receptors will significantly advance our knowledge and could lead to the identification of novel therapeutic targets and innovative treatment strategies for diseases associated with altered cannabinoid receptor functions.


Assuntos
Canabinoides , Proteômica , Receptores de Canabinoides/genética , Agonistas de Receptores de Canabinoides , Epigênese Genética
7.
Acta Neuropathol Commun ; 10(1): 127, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36045406

RESUMO

α-Dystrobrevin (α-DB) is a major component of the dystrophin-associated protein complex (DAPC). Knockout (KO) of α-DB in the brain is associated with astrocytic abnormalities and loss of neuronal GABA receptor clustering. Mutations in DAPC proteins are associated with altered dopamine signaling and cognitive and psychiatric disorders, including schizophrenia. This study tested the hypothesis that motivation and associated underlying biological pathways are altered in the absence of α-DB expression. Male wildtype and α-DB KO mice were tested for measures of motivation, executive function and extinction in the rodent touchscreen apparatus. Subsequently, brain tissues were evaluated for mRNA and/or protein levels of dysbindin-1, dopamine transporter and receptor 1 and 2, mu opioid receptor 1 (mOR1) and cannabinoid receptor 1 (CB1). α-DB KO mice had significantly increased motivation for the appetitive reward, while measures of executive function and extinction were unaffected. No differences were observed between wildtype and KO animals on mRNA levels of dysbindin-1 or any of the dopamine markers. mRNA levels of mOR1were significantly decreased in the caudate-putamen and nucleus accumbens of α-DB KO compared to WT animals, but protein levels were unaltered. However, CB1 protein levels were significantly increased in the prefrontal cortex and decreased in the nucleus accumbens of α-DB KO mice. Triple-labelling immunohistochemistry confirmed that changes in CB1 were not specific to astrocytes. These results highlight a novel role for α-DB in the regulation of appetitive motivation that may have implications for other behaviours that involve the dopaminergic and endocannabinoid systems.


Assuntos
Dopamina , Proteínas Associadas à Distrofina , Motivação , Receptores de Canabinoides , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Disbindina/metabolismo , Proteínas Associadas à Distrofina/genética , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Recompensa
8.
J Cell Physiol ; 237(9): 3517-3540, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35862111

RESUMO

The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.


Assuntos
Canabinoides , Endocanabinoides , Canabinoides/farmacologia , Endocanabinoides/farmacologia , Músculo Esquelético/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB2 de Canabinoide/genética , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
9.
J Vet Intern Med ; 36(4): 1508-1524, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35801813

RESUMO

BACKGROUND: The endocannabinoid system (ECS) is composed of cannabinoid receptors type 1 (CBR1) and type 2 (CBR2), cannabinoid-based ligands (endogenous chemically synthesized phytocannabinoids), and endogenous enzymes controlling their concentrations. Cannabinoid receptors (CBRs) have been identified in invertebrates and in almost all vertebrate species in the central and peripheral nervous system as well as in immune cells, where they control neuroimmune homeostasis. In humans, rodents, dogs, and cats, CBRs expression has been confirmed in the skin, and their expression and tissue distribution become disordered in pathological conditions. Cannabinoid receptors may be a possible therapeutic target in skin diseases. OBJECTIVES: To characterize the distribution and cellular expression of CBRs in the skin of horses under normal conditions. ANIMALS: Fifteen healthy horses. METHODS: Using full-thickness skin punch biopsy samples, skin-derived primary epidermal keratinocytes and dermal-derived cells, we performed analysis of Cnr1 and Cnr2 genes using real-time PCR and CBR1 and CBR2 protein expression by confocal microscopy and Western blotting. RESULTS: Normal equine skin, including equine epidermal keratinocytes and dermal fibroblast-like cells, all exhibited constant gene and protein expression of CBRs. CONCLUSIONS AND CLINICAL IMPORTANCE: Our results represent a starting point for developing and translating new veterinary medicine-based pharmacotherapies using ECS as a possible target.


Assuntos
Canabinoides , Pele , Animais , Cavalos , Receptores de Canabinoides/genética , Distribuição Tecidual
10.
J Immunol Res ; 2022: 4323259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35692500

RESUMO

Emerging information suggests a potential role of medicinal cannabis in pain medication in addition to enhancing immune functions. Endometriosis is a disease of women of reproductive age associated with infertility and reproductive failure as well as chronic pain of varying degrees depending on the stage of the disease. Currently, opioids are being preferred over nonsteroidal anti-inflammatory drugs (NSAID) due to the latter's side effects. However, as the opioids are becoming a source of addiction, additional pain medication is urgently needed. Cannabis offers an alternative therapy for treating the pain associated with endometriosis. Information on the use and effectiveness of cannabis against endometriotic pain is lacking. Moreover, expression of receptors for endocannabinoids by the ovarian endometriotic lesions is not known. The goal of this study was to examine whether cannabinoid receptors 1 and 2 (CB1 and CB2) are expressed by ovarian endometriotic lesions. Archived normal ovarian tissues, ovaries with endometriotic lesions, and normal endometrial tissues were examined for the presence of endometrial stromal cells using CD10 (a marker of endometrial stromal cells). Expression of CB1 and CB2 were determined by immunohistochemistry, immunoblotting, and gene expression studies. Intense expression for CB1 and CB2 was detected in the epithelial cells in ovarian endometriotic lesions. Compared with stroma in ovaries with endometriotic lesions, the expression of CB1 and CB2 was significantly higher in the epithelial cells in endometriotic lesions in the ovary (P < 0.0001 and P < 0.05, respectively). Immunoblotting and gene expression assays showed similar patterns for CB1 and CB2 protein and CNR1 (gene encoding CB1) and CNR2 (gene encoding CB2) gene expression. These results suggest that ovarian endometriotic lesions express CB1 and CB2 receptors, and these lesions may respond to cannabinoids as pain medication. These results will form a foundation for a clinical study with larger cohorts.


Assuntos
Canabinoides , Endometriose , Analgésicos Opioides , Endometriose/tratamento farmacológico , Feminino , Expressão Gênica , Humanos , Dor/tratamento farmacológico , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
11.
J Biol Chem ; 298(6): 101999, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35500651

RESUMO

Type-2 cannabinoid receptors (CB2, encoded by the Cnr2 gene) are mainly expressed in immune cells, and CB2 agonists normally have no analgesic effect. However, nerve injury upregulates CB2 in the dorsal root ganglion (DRG), following which CB2 stimulation reduces neuropathic pain. It is unclear how nerve injury increases CB2 expression or how CB2 activity is transformed in neuropathic pain. In this study, immunoblotting showed that spinal nerve ligation (SNL) induced a delayed and sustained increase in CB2 expression in the DRG and dorsal spinal cord synaptosomes. RNAscope in situ hybridization also showed that SNL substantially increased CB2 mRNA levels, mostly in medium and large DRG neurons. Furthermore, we found that the specific CB2 agonist JWH-133 significantly inhibits the amplitude of dorsal root-evoked glutamatergic excitatory postsynaptic currents in spinal dorsal horn neurons in SNL rats, but not in sham control rats; intrathecal injection of JWH-133 reversed pain hypersensitivity in SNL rats, but had no effect in sham control rats. In addition, chromatin immunoprecipitation-qPCR analysis showed that SNL increased enrichment of two activating histone marks (H3K4me3 and H3K9ac) and diminished occupancy of two repressive histone marks (H3K9me2 and H3K27me3) at the Cnr2 promoter in the DRG. In contrast, SNL had no effect on DNA methylation levels around the Cnr2 promoter. Our findings suggest that peripheral nerve injury promotes CB2 expression in primary sensory neurons via epigenetic bivalent histone modifications and that CB2 activation reduces neuropathic pain by attenuating nociceptive transmission from primary afferent nerves to the spinal cord.


Assuntos
Canabinoides , Neuralgia , Receptores de Canabinoides , Medula Espinal , Regulação para Cima , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Gânglios Espinais/metabolismo , Código das Histonas , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Medula Espinal/metabolismo
12.
J Neurosci ; 42(8): 1557-1573, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34965974

RESUMO

Collagen VI is a key component of muscle basement membranes, and genetic variants can cause monogenic muscular dystrophies. Conversely, human genetic studies recently implicated collagen VI in central nervous system function, with variants causing the movement disorder dystonia. To elucidate the neurophysiological role of collagen VI, we generated mice with a truncation of the dystonia-related collagen α3 VI (COL6A3) C-terminal domain (CTD). These Col6a3CTT mice showed a recessive dystonia-like phenotype in both sexes. We found that COL6A3 interacts with the cannabinoid receptor 1 (CB1R) complex in a CTD-dependent manner. Col6a3CTT mice of both sexes have impaired homeostasis of excitatory input to the basal pontine nuclei (BPN), a motor control hub with dense COL6A3 expression, consistent with deficient endocannabinoid (eCB) signaling. Aberrant synaptic input in the BPN was normalized by a CB1R agonist, and motor performance in Col6a3CTT mice of both sexes was improved by CB1R agonist treatment. Our findings identify a readily therapeutically addressable synaptic mechanism for motor control.SIGNIFICANCE STATEMENT Dystonia is a movement disorder characterized by involuntary movements. We previously identified genetic variants affecting a specific domain of the COL6A3 protein as a cause of dystonia. Here, we created mice lacking the affected domain and observed an analogous movement disorder. Using a protein interaction screen, we found that the affected COL6A3 domain mediates an interaction with the cannabinoid receptor 1 (CB1R). Concordantly, our COL6A3-deficient mice showed a deficit in synaptic plasticity linked to a deficit in cannabinoid signaling. Pharmacological cannabinoid augmentation rescued the motor impairment of the mice. Thus, cannabinoid augmentation could be a promising avenue for treating dystonia, and we have identified a possible molecular mechanism mediating this.


Assuntos
Canabinoides , Colágeno Tipo VI , Distonia , Distúrbios Distônicos , Neurônios Motores , Plasticidade Neuronal , Animais , Canabinoides/metabolismo , Canabinoides/farmacologia , Colágeno Tipo VI/genética , Colágeno Tipo VI/metabolismo , Distonia/genética , Distonia/metabolismo , Distúrbios Distônicos/genética , Distúrbios Distônicos/metabolismo , Feminino , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Mutação , Plasticidade Neuronal/efeitos dos fármacos , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-34363866

RESUMO

The accumulation of amyloid-ß (Aß) peptides in the brain is considered to be the initial event in the Alzheimer's disease (AD). Neurotoxicity mediated by Aß has been demonstrated to damage the cognitive function. In the present study, we sought to determine the effects of O-1602, a specific G-protein coupled receptor 55 (GPR55) agonist, on the impairment of learning and memory induced by intracerebroventricular (i.c.v.) of Aß1-42 (400 pmol/mouse) in mice. Our results showed that i.c.v. injection of aggregated Aß1-42 into the brain of mice resulted in cognitive impairment and neurotoxicity. In contrast, O-1602 (2.0 or 4.0 µg/mouse, i.c.v.) can improve memory impairment induced by Aß1-42 in the Morris water maze (MWM), and novel object recognition (NOR) tests. Besides, we found that O-1602 reduced the activity of ß-secretase 1 (BACE1) and the level of soluble Aß1-42 in the hippocampus and frontal cortex. Importantly, O-1602 treatment reversed Aß1-42-induced GPR55 down-regulation, decreased pro-inflammatory cytokines, and the level of malondialdehyde (MDA), increased the levels of glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT), as well as suppressed apoptosis as indicated by decreased TUNEL-positive cells, and increased the ratio of Bcl-2/Bax. O-1602 treatment also pronouncedly ameliorated synaptic dysfunction by promoting the upregulation of PSD-95 and synaptophysin (SYN) proteins. Moreover, O-1602 concurrently down regulated the protein levels of RhoA, and ROCK2, the critical proteins in the RhoA/ROCK2 pathway. This study indicates that O-1602 may reverse Aß1-42-induced cognitive impairment and neurotoxicity in mice by inhibiting RhoA/ROCK2 pathway. Taken together, these findings suggest that GPR55 could be a novel and promising target for the treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Canabidiol/análogos & derivados , Disfunção Cognitiva/tratamento farmacológico , Síndromes Neurotóxicas , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/metabolismo , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Canabidiol/administração & dosagem , Modelos Animais de Doenças , Hipocampo/metabolismo , Infusões Intraventriculares , Transtornos da Memória/induzido quimicamente , Camundongos , Fragmentos de Peptídeos , Receptores de Canabinoides/genética
14.
Int J Mol Sci ; 22(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34948125

RESUMO

G protein-coupled receptor 55 (GPR55) is a recently deorphanized lipid- and peptide-sensing receptor. Its lipidic endogenous agonists belong to lysoglycerophospholipids, with lysophosphatidylinositol (LPI) being the most studied. Peptide agonists derive from fragmentation of pituitary adenylate cyclase-activating polypeptide (PACAP). Although GPR55 and its ligands were implicated in several physiological and pathological conditions, their biological function remains unclear. Thus, the aim of the study was to conduct a large-scale re-analysis of publicly available gene expression datasets to identify physiological and pathological conditions affecting the expression of GPR55 and the production of its ligands. The study revealed that regulation of GPR55 occurs predominantly in the context of immune activation pointing towards the role of the receptor in response to pathogens and in immune cell lineage determination. Additionally, it was revealed that there is almost no overlap between the experimental conditions affecting the expression of GPR55 and those modulating agonist production. The capacity to synthesize LPI was enhanced in various types of tumors, indicating that cancer cells can hijack the motility-related activity of GPR55 to increase aggressiveness. Conditions favoring accumulation of PACAP-derived peptides were different than those for LPI and were mainly related to differentiation. This indicates a different function of the two agonist classes and possibly the existence of a signaling bias.


Assuntos
Diferenciação Celular , Mineração de Dados , Bases de Dados de Ácidos Nucleicos , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Neoplasias , Receptores de Canabinoides , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Humanos , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Neoplasias/genética , Neoplasias/imunologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/imunologia , Receptores de Canabinoides/genética , Receptores de Canabinoides/imunologia
15.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830256

RESUMO

Novel interest has arisen in recent years regarding bone, which is a very complex and dynamic tissue deputed to several functions ranging from mechanical and protective support to hematopoiesis and calcium homeostasis maintenance. In order to address these tasks, a very refined, continuous remodeling process needs to occur involving the coordinated action of different types of bone cells: osteoblasts (OBs), which have the capacity to produce newly formed bone, and osteoclasts (OCs), which can remove old bone. Bone remodeling is a highly regulated process that requires many hormones and messenger molecules, both at the systemic and the local level. The whole picture is still not fully understood, and the role of novel actors, such as the components of the endocannabinoids system (ECS), including endogenous cannabinoid ligands (ECs), cannabinoid receptors (CBRs), and the enzymes responsible for endogenous ligand synthesis and breakdown, is extremely intriguing. This article reviews the connection between the ECS and skeletal health, supporting the potential use of cannabinoid receptor ligands for the treatment of bone diseases associated with accelerated osteoclastic bone resorption, including osteoporosis and bone metastasis.


Assuntos
Neoplasias Ósseas/metabolismo , Reabsorção Óssea/metabolismo , Endocanabinoides/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Remodelação Óssea/fisiologia , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Regulação da Expressão Gênica , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Humanos , Metástase Neoplásica , Osteoblastos/patologia , Osteoclastos/patologia , Osteoporose/tratamento farmacológico , Osteoporose/genética , Osteoporose/patologia , Ligante RANK/genética , Ligante RANK/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Transdução de Sinais
16.
Drug Des Devel Ther ; 15: 4687-4699, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815664

RESUMO

PURPOSE: Hyperalgesia and bladder overactivity are two main symptoms of interstitial cystitis/bladder pain syndrome (IC/BPS). Cannabinoid receptors participate in the modulation of pain and bladder function. GPR18, a member of the cannabinoid receptor family, also participates in the regulation of pain and bladder function, but its underlying mechanisms are unknown. In this work, we sought to study the role of GPR18 in IC/BPS. METHODS: A rat model of IC/BPS was established with cyclophosphamide (CYP). Paw withdrawal threshold (PWT) measurement and cystometry were used to evaluate pain and bladder function, respectively. RT-PCR, Western blotting and immunofluorescence were used to assess the expression and distribution of GPR18. The role of GPR18 in pain and bladder function was studied by intrathecal injection of resolvin D2 (RvD2, a GPR18 agonist) and O-1918 (a GPR18 antagonist). Calcium imaging was used to study the relationship between GPR18 and TRPV1. RESULTS: A rat model of IC/BPS, which exhibited a decreased PWT and micturition interval, was successfully established with CYP. The mRNA and protein expression of GPR18 was reduced in the bladder and dorsal root ganglia (DRG) in rats with CYP-induced cystitis. Intrathecal injection of RvD2 increased the PWT and micturition interval. However, O-1918 blocked the therapeutic effect of RvD2. GPR18 was present in bladder afferent nerves and colocalized with TRPV1 in DRG, and RvD2 decreased capsaicin-induced calcium influx in DRG. CONCLUSION: Activation of GPR18 by RvD2 alleviated hyperalgesia and improved bladder function, possibly by inhibiting TRPV1 in rats with CYP-induced cystitis.


Assuntos
Cistite/tratamento farmacológico , Ácidos Docosa-Hexaenoicos/farmacologia , Dor/tratamento farmacológico , Receptores de Canabinoides/metabolismo , Canais de Cátion TRPV/antagonistas & inibidores , Bexiga Urinária/efeitos dos fármacos , Animais , Ciclofosfamida , Cistite/induzido quimicamente , Cistite/metabolismo , Modelos Animais de Doenças , Feminino , Ratos , Ratos Sprague-Dawley , Receptores de Canabinoides/genética , Canais de Cátion TRPV/metabolismo , Bexiga Urinária/metabolismo
17.
Cannabis Cannabinoid Res ; 6(6): 488-507, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34591647

RESUMO

Background: Neuroinflammation is a key feature shared by most, if not all, neuropathologies. It involves complex biological processes that act as a protective mechanism to fight against the injurious stimuli, but it can lead to tissue damage if self-perpetuating. In this context, microglia, the main cellular actor of neuroinflammation in the brain, are seen as a double-edged sword. By phagocyting neuronal debris, these cells can not only provide tissue repair but can also contribute to neuronal damage by releasing harmful substances, including inflammatory cytokines. The mechanisms guiding these apparent opposing actions are poorly known. The endocannabinoid system modulates the release of inflammatory factors such as cytokines and could represent a functional link between microglia and neuroinflammatory processes. According to transcriptomic databases and in vitro studies, microglia, the main source of cytokines in pathological conditions, express the cannabinoid type 1 receptor (CB1R). Methods: We thus developed a conditional mouse model of CB1R deletion specifically in microglia, which was subjected to an immune challenge (peripheral lipopolysaccharide injection). Results: Our results reveal that microglial CB1R differentially controls sickness behavior in males and females. Conclusion: These findings add to the comprehension of neuroinflammatory processes and might be of great interest for future studies aimed at developing therapeutic strategies for brain disorders with higher prevalence in men.


Assuntos
Canabinoides , Encefalite , Animais , Masculino , Camundongos , Microglia , Doenças Neuroinflamatórias , Receptores de Canabinoides/genética
18.
Biochem Biophys Res Commun ; 569: 86-92, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34237432

RESUMO

Neutrophils undergo spontaneous apoptosis within 24-48 h after leaving bone marrow. Apoptotic neutrophils are subsequently phagocytosed and cleared by macrophages, thereby maintaining neutrophil homeostasis. Previous studies have demonstrated involvement of lysophosphatidylglucoside (lysoPtdGlc), a degradation product of PtdGlc, in modality-specific repulsive guidance of spinal sensory axons, via its specific receptor GPR55. In the present study, using human monocytic cell line THP-1 as a model, we demonstrated that lysoPtdGlc induces monocyte/macrophage migration with typical bell-haped curve and a peak at concentration 10-9 M. Lysophosphatidylinositol (lysoPtdIns), a known GPR55 ligand, induced migration at higher concentration (10-7 M). LysoPtdGlc-treated cells had a polarized shape, whereas lysoPtdIns-treated cells had a spherical shape. In EZ-TAXIScan (chemotaxis) assay, lysoPtdGlc induced chemotactic migration activity of THP-1 cells, while lysoPtdIns induced random migration activity. GPR55 antagonist ML193 inhibited lysoPtdGlc-induced THP-1 cell migration, whereas lysoPtdIns-induced migration was inhibited by CB2-receptor inverse agonist. SiRNA experiments showed that GPR55 mediated lysoPtdGlc-induced migration, while lysoPtdIns-induced migration was mediated by CB2 receptor. Our findings, taken together, suggest that lysoPtdGlc functions as a chemotactic molecule for human monocytes/macrophages via GPR55 receptor, while lysoPtdIns induces random migration activity via CB2 receptor.


Assuntos
Movimento Celular/efeitos dos fármacos , Glucosídeos/farmacologia , Lisofosfolipídeos/química , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Receptores de Canabinoides/metabolismo , Western Blotting , Movimento Celular/genética , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/fisiologia , Glucosídeos/química , Humanos , Lisofosfolipídeos/farmacologia , Macrófagos/citologia , Macrófagos/metabolismo , Monócitos/citologia , Monócitos/metabolismo , Interferência de RNA , Receptores de Canabinoides/genética , Células THP-1
19.
Histochem Cell Biol ; 156(5): 449-460, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34324032

RESUMO

Although the expression of the putative cannabinoid receptor GPR55 has been shown to be involved in the growth of various tumours and is increased in a number of cancers, its expression has not been examined in patients with endometrial cancer (EC). Quantitative RT-PCR (for mRNA levels) and immunohistochemistry (for protein levels) were used to measure GPR55 expression in patients with Type 1 and Type 2 EC and correlated against cannabinoid receptor (CB1 and CB2) protein levels using non-cancerous endometrium as the control tissue. The data indicated that GPR55 transcript and GPR55 protein levels were significantly (p < 0.002 and p < 0.0001, respectively) higher in EC tissues than in control tissues. The levels of immunoreactive GPR55 protein were correlated with GPR55 transcript levels, but not with the expression of CB1 receptor protein, and were inversely correlated with CB2 protein expression, which was significantly decreased. It can be concluded that GPR55 expression is elevated in women with EC, and thus could provide a potential novel biomarker and therapeutic target for this disease.


Assuntos
Neoplasias do Endométrio/genética , Receptores de Canabinoides/genética , Idoso , Neoplasias do Endométrio/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Receptores de Canabinoides/metabolismo
20.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066927

RESUMO

Anandamide (AEA) is one of the best characterized members of the endocannabinoid family and its involvement in many pathophysiological processes has been well documented in vertebrates and invertebrates. Here, we report the biochemical and functional characterization of key elements of the endocannabinoid system in hemocytes isolated from the Mediterranean mussel Mytilus galloprovincialis. We also show the effects of exogenous AEA, as well as of capsaicin, on the cell ability to migrate and to activate the respiratory burst, upon in vitro stimulation of phagocytosis. Interestingly, our findings show that both AEA and capsaicin suppress the hemocyte response and that the use of selective antagonists of CB2 and TRPV1 receptors revert their inhibitory effects. Overall, present data support previous evidence on the presence of endocannabinoid signaling in mollusks and advance our knowledge about the evolutionary origins of this endogenous system and its role in the innate response of mollusks.


Assuntos
Endocanabinoides/metabolismo , Mytilus/imunologia , Sequência de Aminoácidos , Animais , Ácidos Araquidônicos/farmacologia , Capsaicina/farmacologia , Endocanabinoides/farmacologia , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Mytilus/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Filogenia , Alcamidas Poli-Insaturadas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Canabinoides/química , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...